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SUMMARY

This paper addresses an application of ORTHOMIN and GMRES to petroleum reservoir simulation using
the black oil model on unstructured grids. Comparisons between these two algorithms are presented
in terms of storage and total �ops per restart step. Numerical results indicate that GMRES is faster
than ORTHOMIN for all tested petroleum reservoir problems, particularly for large scale problems.
The control volume function approximation method is utilized in the discretization of the governing
equations of the black oil model. This method can accurately approximate both the pressure and velocity
in the simulation of multiphase �ow in porous media, e�ectively reduce grid orientation e�ects, and be
easily applied to arbitrarily shaped control volumes. It is particularly suitable for hybrid grid reservoir
simulation. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: oil reservoir simulator; ORTHOMIN; GMRES; ILU preconditioner; control volume
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1. INTRODUCTION

Nowadays, new requirements on petroleum reservoir simulation technology are very sophis-
ticated. These requirements include �ne unstructured grids for development of new oil=gas
�elds, management of old oil=gas �elds, and shortening of history matching processes and
simulation time, for example. On one hand, the �ne unstructured grids easily generate a
large-scale simulation model with a size of millions of unknowns. On the other hand, the
shortening of history matching and simulation time requires fast and accurate algorithms for
solving large-scale systems. Moreover, the systems of algebraic equations arising from the
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numerical discretization of the governing equations for multiphase �ow in reservoirs have
special properties. The coe�cient (sti�ness) matrices of these systems are sparse but non-
symmetric and inde�nite, for example. While sparse, their band structure is usually spoiled
by wells that perforate into many gridblocks and by irregular gridblock structure. Further-
more, for petroleum simulation problems with a number of gridblocks of over 100 000, about
80–90% of the total simulation time is spent on solution of linear systems. Thus the choice
of a linear solver is very important in the numerical simulation of multiphase �ow.
To model accurately and e�ciently irregularly geometrical and geological features and �ow

patterns of a reservoir, gridding techniques of unstructured girds and various discretization
methods have been developed in the past decade [1]. Heinrichs [2] introduced the perpendic-
ular bisector (PEBI) method, Forsyth [3] developed control volume �nite element (CVFE)
grids and the CVFE method for thermal reservoir simulation, and Fung et al. [4] applied
them to commercial thermal reservoir simulators. Verma and Aziz [5] improved the CVFE
method to deal with permeability tensors using three-dimensional CVFE grids. Li et al. [6]
recently introduced the control volume function approximation (CVFA) method into the black
oil reservoir simulation using arbitrarily shaped grids and checked the stability and accuracy of
this method to deal with the ‘bubble point’ and coning problems [7]. Because the connection
between grid blocks is irregular for unstructured grids, the Jacobian matrices for these grids
are much more complicated than those for structured grids. Furthermore, the grid irregularity
requires a great amount of memory and computational time to solve systems of algebraic
equations. In this paper we apply the CVFA to discretize the governing equations of the
black oil model. This method can directly discretize these equations on arbitrarily shaped
control volumes and can guarantee that the �ux is continuous across an interface between
two neighbouring control volumes.
The orthogonal minimum residual (ORTHOMIN) algorithm [8] is capable of solving sparse,

nonsymmetric systems of algebraic equations. It has been applied to petroleum reservoir simu-
lation and is still widely used, particularly for reservoir simulation on structured grids. In this
paper we study its application to unstructured reservoir simulation using the black oil model.
Also, we discuss an application of the generalized minimum residual (GMRES) algorithm to
unstructured grids. GMRES [9] is more e�cient and robust, particularly for solution of large
systems. This algorithm has been applied to numerical solution of the Navier–Stokes equa-
tions of compressible �ow [10] and multiphase �ow in porous media on structured grids [11].
Here we focus on its application to unstructured reservoir simulation. In addition, we carry
out comparisons between these two algorithms in terms of storage, total �ops per restart, and
CPU time for benchmark problems of the comparative solution projects (CSP) organized by
the society of petroleum engineers (SPE) and for real oil �eld problems. Numerical results
indicate that GMRES is faster than ORTHOMIN for all tested petroleum reservoir problems,
particularly for large scale problems. GMRES uses only as much as 61% of the CPU time
of ORTHOMIN for some of the tested problems in this paper.
The rest of the paper is organized as follows. In the next section, we brie�y review

the black oil model, its linearization by the Newton–Raphson procedure, and its discretiza-
tion by the CVFA. Then, in the third section, for the purpose of comparison we state
ORTHOMIN and GMRES. Comparisons between these two algorithms in terms of their stor-
age and �ops are presented in the fourth section. In the last section we apply ORTHOMIN
and GMRES to �ve simulation problems, compare them numerically, and make concluding
remarks.
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2. THE BLACK OIL MODEL AND ITS DISCRETIZATION

In the black oil model, it is assumed that the hydrocarbon components are divided into a gas
component and an oil component in a stock tank at the standard pressure and temperature
and that no mass transfer occurs between the water phase and the other two phases (oil and
gas). The gas component mainly consists of methane and ethane.
Let � and K denote the porosity and permeability of a porous medium �⊂ �3, s�, ��, p�,

u�, B�, and Kr� be the saturation, viscosity, pressure, volumetric velocity, formation volume
factor, and relative permeability of the � phase, �=w; o; g, respectively, and Rso be the gas
solubility. Then the mass conservation equations of the black oil model are [12, 13]
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for the gas component, where ��S is the density of the � component at standard conditions
(stock tank), and q� is the mass �ow rate of component � at wells, �=W;O;G. The volu-
metric velocity of the � phase is represented by Darcy’s law

u�=−KKr�
��

∇��; �=w; o; g (4)

where the potential �� of the � phase is given by

��=p� − ��g̃D; �=w; o; g (5)

�� represents the density of the � phase, g̃ is the gravitational constant, and D is the depth
function. The saturations of the water, oil, and gas phases satisfy the constraint

sw + so + sg = 1 (6)

Furthermore, the phase pressures are related by the capillary pressures pcow and pcgo:

pcow =po − pw; pcgo =pg − po (7)

Finally, the mass �ow rates q� of wells can be calculated using Peaceman’s formulas [13, 14].
The boundary and initial conditions are given as follows. In this paper we consider no �ow

boundary conditions

u� · n=0; �=w; o; g; x ∈ @� (8)

where n is the outward unit norm to the boundary @� of the reservoir domain �. The initial
conditions depend on the state of a reservoir. When all gas dissolves into the oil phase,
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there is no gas phase present, i.e. sg = 0. In such a case, the reservoir is said to be in the
undersaturated state. If all three phases co-exist, the reservoir is referred to as in the saturated
state. In the undersaturated state, we use p=po, sw, and pb as the unknowns, where pb is
the bubble point pressure; see Reference [7]. The corresponding initial conditions are

p(x; 0) = p0(x); x∈�
sw(x; 0) = s0w(x); x∈�
pb(x; 0) = p0b(x); x∈�

(9)

In the saturated state, we employ p=po, sw, and so as the unknowns. In this case, the initial
conditions become

p(x; 0) = p0(x); x ∈ �
sw(x; 0) = s0w(x); x∈�
so(x; 0) = s0o(x); x ∈ �

(10)

We use a fully implicit method to solve the nonlinear equations (1)–(9) (or (10)) and apply
the CVFA to discretize them in space. To model accurately the geometrical and geological
features of a reservoir, a hybrid grid needs to be used for reservoir simulation. As noted,
because the CVFA can directly discretize an equation on arbitrarily shaped grids and is espe-
cially suitable for hybrid grid reservoir simulation, we apply this method to the discretization
of the governing equations of the black oil model and the treatment of wells.
We very brie�y review the discretization of the black oil model using the CVFA and the

linearization of this model using the Newton–Raphson iteration. For more details, refer to
Reference [7]. Let Vi be a control volume. Substituting Equations (4) with �=w; o; g into
(1)–(3), respectively, and using the divergence theorem, the integral forms of the resulting
equations are∮
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for the oil component, and
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for the gas component, where n is the outward unit norm to @Vi.
Since the unknowns on control volumes can be di�erent under di�erent states of a reservoir,

the integral forms of the governing equations on each control volume are solved, respectively,
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according to the undersaturated and saturated states. In the undersaturated state, the lth iteration
values of the water and oil potentials on boundary eij of Vi at the (n + 1)th time step are
approximated by
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where l refers to the iteration number of Newton–Raphson’s iterations, �ij; r(x) are the shape
functions, r=0; 1; : : : ; Ri;j, Rij +1 is the total number of interpolation points for (��h)

(n+1)
l on

eij, and (�i�j;r)
(n+1)
l denotes the nodal value of (��h)
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l , �=w; o. Since �p, �pb, and �sw

at grid points in all time steps need to be obtained for this state, we approximate the lth
iteration values of these variables at the (n+ 1)th time step by
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We substitute these interpolants into the linearized governing equations to obtain the dis-
crete equations. In these discrete equations, the lth iteration values of increments (�pij; r)

(n+1)
l ,

(�siwj; r)
(n+1)
l , and (�pibj; r)

(n+1)
l at the (n+ 1)th time step at nodes xij; r are the unknowns to be

solved for. For a well with a �ow rate control, the increment of its bottom hole pressure pbh
also needs to be obtained. After these increments are obtained, the iteration solutions at grid
point xi and the bottom hole pressure of the kth well are updated by
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Similarly, in the saturated state, we approximate the lth iteration values of the water, oil,
and gas potentials at the (n+ 1)th time step by
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and approximate the unknowns (�p)(n+1)l , (�sw)
(n+1)
l , and (�so)
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We substitute them into the linearized governing equations to get the discrete equations. The
iteration solution values at grid point xi and the kth well, which has a �ow rate control, are
updated by
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We remark that di�erent states at di�erent places in a reservoir can occur; i.e. the saturated
and undersaturated states can co-exist. In this case, the governing equations on each control
volume are linearized and discretized according to the state in this volume.
The form of the coe�cient matrix of the system arising from the discretization of the

black oil model using the CVFA depends on the type of control volumes used. An example
of hybrid grids in reservoir simulation is shown in Figure 1, where a cross section in the
horizontal direction is illustrated. The base grid in this direction consists of hexagons; the
grid near a vertical well is circular, and it is rectangular near a slanted well. The hexagons
can e�ectively reduce grid orientation e�ects [6]. For a reservoir that has a layer structure,

Figure 1. Grid modules.
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Vi

Figure 2. Control volume Vi.

hexagonal prisms (hexagons in the horizontal direction and rectangles in the vertical direction)
can be utilized; see Figure 2. For this type of grids, the system of algebraic equations is of
the form (

Agg Agw

Awg Aww

)(
Xg

Xw

)
=

(
RHSg

RHSw

)
(20)

where Xg and Xw are the unknown vector at grid nodes and the bottom hole pressure unknown
vector at wells, Agg and Aww are the sub-matrices associated with the grid nodes and wells,
respectively, and Agw and Awg are the interaction sub-matrices between the grid nodes and
wells. As noted, this system is non-symmetric. Moreover, the band structure of the coe�cient
matrix in (20) is spoiled by wells that perforate into many gridblocks and by irregular grid
structure. In this paper we investigate the application of ORTHOMIN and GMRES to (20),
and numerically carry out comparisons between these two solvers.

3. ORTHOMIN AND GMRES

ORTHOMIN is a truncated version of the generalized conjugate residual (GCR) algorithm
and an e�cient iterative solver for petroleum reservoir simulation [8]. For the purpose of
comparison, a general ORTHOMIN(K) is brie�y reviewed in Algorithm 1 for solution of a
left-preconditioned system

M−1Ax=M−1b

In Algorithm 1, for the purpose of illustration, M =LU is an ILU factorization of A. A left-
preconditioned GMRES is described in Algorithm 2, where Ĥm is the upper Hessenberg from
the Gram–Schmidt process. A variant of GMRES, �exible GMRES (FGMRES) [15], uses
a di�erent preconditioner at each step of the Arnoldi process. The Arnoldi process simply
constructs an orthogonal basis for the preconditioned Krylov subspace

�m=span{r0; M−1
1 Ar0; : : : ; (M−1

1 A) · · · (M−1
m−1A)r0}

The di�erence between GMRES and FGMRES is that for GMRES, all the Mi=M are
the same, and zi=M−1vi need not be stored for right preconditioners during computations.
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Algorithm 1.
ORTHOMIN(K)

1. M =LU , where LU is an ILU factorization of A
2. Start: Set r= b; x=p0 = 0; Iter=0; and the values of �; ITMAX; K
3. Iteration:
(a) For k=1; K do

i. Iter= Iter + 1
ii. uk =M−1rk−1
iii. vk =Auk
iv. pk = uk
v. qk = vk

vi. For 16 j ¡ k; do

⎧⎪⎨
⎪⎩
�jk =(qj; vk)=(qj; qj)

pk =pk − �jkpj
qk = qk − �jkqj

vii. �k =(qk ; rk−1)=(qk ; qk)
viii. xk = xk−1 + �kpk
ix. rk = rk−1 − �kqk
x. Compute ‖rk‖2; RMX = ‖rk‖2=‖b‖2
xi. If (RMX 6 � or Iter ¿ ITMAX); go to 4:

(b) End do
(c) r0 = rK
(d) x0 = xK
(e) Go to (a)

4. End iteration

Algorithm 2.

Left preconditioned GMRES(m)
1. M =LU , where LU is an ILU factorization of A
2. Start: Choose an initial guess x0 and the dimension of the Krylov subspace m.
Set up a (m+ 1)×m matrix Ĥm with zero entries.

3. Arnoldi process:
(a) Compute r0 =M−1(b− Ax0); �= ‖r0‖2; and v1 = r0=�
(b) For j=1; : : : ; m, do

• Compute wj=M−1Avj

• For i=1; : : : ; j,
{
hij=(wj; vi)

wj=wj − hijvi
• Compute hj+1;j= ‖wj‖2 and vj+1 =wj=‖wj‖2

(c) De�ne Zm=[v1; : : : ; vm].
4. Update: xm= x0 + Zmym, where

ym=argmin‖�e1 − Ĥmy‖2
5. Restart: If convergent, stop; else, x0 = xm and go to 3
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FGMRES is more �exible and suitable to solution of di�cult problems with complex precon-
ditioners.

4. COMPARISONS

We assume that the same preconditioner M is used for both algorithms. Let STP and STA
be the amount of storage for M and A, and let FLOPP and FLOPA be the total �ops of
computing M−1x and Ax, respectively, where x is a vector. Below we compare ORTHOMIN
and GMRES in terms of the storage and total �ops per restart. The de�nition of a �op follows
Moler [16]; i.e. a �op involves the operation s+ a ∗ b.

4.1. Comparison in terms of storage

Let NEQ be the number of partial di�erential equations (e.g. NEQ=3 for the black oil
model), NCV be the number of grids in the simulation domain, and NRSTRT be the number
of restarts, i.e. the number of vectors in the Krylov subspace.
For ORTHOMIN, its main storage is as follows:

• Coe�cient matrix: STA
• Preconditioner matrix: STP
• Krylov vector space: 2 ∗NEQ ∗NCV ∗NRSTRT
• Other vectors such as RHS, RES, RA, RR: 4 ∗NEQ ∗NCV
• Total storage: STA + STP + 2 ∗NEQ ∗NCV ∗NRSTRT + 4 ∗NEQ ∗NCV
For GMRES, its main storage is given below:

• Coe�cient matrix: STA
• Preconditioner matrix: STP
• Krylov vector space: NEQ ∗NCV ∗NRSTRT
• Vector space ZNRSTRT = [z1; : : : ; zNRSTRT]: NEQ ∗NCV ∗NRSTRT
• Other vectors such as RHS, RES: 2NEQ ∗NCV
• Matrix Ĥm: (NRSTRT + 1) ∗ (NRSTRT + 6) + 3 ∗NRSTRT + 2
• Total storage: STA+STP+2 ∗NEQ ∗NCV ∗NRSTRT+2 ∗NEQ ∗NCV+(NRSTRT+1) ∗
(NRSTRT + 6) + 3 ∗NRSTRT + 2

From these two counts, we see that when NCV ∗ NEQ ¿ (NRSTRT + 5)2=2, the amount
of storage of ORTHOMIN is bigger than that of GMRES.

4.2. Comparison in terms of total �ops

For convenience, we consider the total �ops of both algorithms per restart step.
For ORTHOMIN, its main computational �ops are

• Coe�cient matrix: FLOPA ∗NRSTRT
• Preconditioner matrix: FLOPP ∗NRSTRT
• Inner product: {NRSTRT=2 + 2 ∗ (NRSTRT+ 1) ∗NRSTRT=2 + 2 ∗NRSTRT} ∗ (NEQ ∗
NCV=2)= (NRSTRT=2 + 7=4) ∗NEQ ∗NCV ∗NRSTRT

• Vector update: {4+ (NRSTRT+ 1)} ∗NEQ ∗NCV ∗NRSTRT=(NRSTRT+ 5) ∗NEQ ∗
NCV ∗NRSTRT
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• Total �op count: {FLOPA+FLOPP+((NRSTRT=2+7=4)+4+(NRSTRT+1))∗NEQ∗
NCV}∗NRSTRT= {FLOPA+FLOPP+(NRSTRT∗3=2+27=4)∗NEQ∗NCV}∗NRSTRT

For GMRES, its main computational �ops are

• Coe�cient matrix: FLOPA ∗NRSTRT
• Preconditioner matrix: FLOPP ∗NRSTRT
• Inner product: {(NRSTRT+1)∗NRSTRT=2+NRSTRT}∗(NEQ∗NCV=2)= (NRSTRT=4+
3=4) ∗NEQ ∗NCV ∗NRSTRT

• Vector update: {(NRSTRT + 1)=2 + 1 + 1} ∗ NEQ ∗ NCV ∗ NRSTRT=(NRSTRT=2 +
5=2) ∗NEQ ∗NCV ∗NRSTRT

• Solving ym=argmin‖�e1 − Ĥmy‖2: (NRSTRT + 1) ∗NRSTRT=2
• Total �op count: {FLOPA+FLOPP+((NRSTRT=4+3=4)+(NRSTRT=2+5=2))∗NEQ∗
NCV}∗NRSTRT+(NRSTRT+1)∗NRSTRT=2= {FLOPA+FLOPP+(NRSTRT∗3=4+
13=4) ∗NEQ ∗NCV} ∗NRSTRT + (NRSTRT + 1) ∗NRSTRT=2

From these total �op counts, we see that when NCV¿NRSTRT, in each restart step the
total �ops of ORTHOMIN are bigger than those of GMRES.
Our simulator SMU02 is a general multicomponent, multiphase reservoir simulator based

on the black oil model. It includes rectangular, PEBI, and Voronoi gridding techniques and
�nite di�erence, control volume �nite element, and control volume function approximation
discretization methods [17]. It consists of two major parts: the initialization SMU02I and the
main body SMU02R. In the SMU02I, data such as �uid, rock, injection, production, grid, and
control data are read from initial �les, and then necessary data preparations are done for the
SMU02R.
The SMU02R includes some major components like time and space discretization of the

governing equations, Newton–Raphson linearizations, construction of Jacobian matrices, solu-
tion of linear systems, and visualization of outputs. The solution of linear systems is within
each Newton–Raphson iteration. As mentioned, for a petroleum reservoir simulation with a
number of gridblocks of order 100 000, about 80–90% of the total simulation time is spent
on the system solution. The linear solvers in SMU02R are based on ORTHOMIN(K) and
GMRES(m), with the preconditioners ILU(K) and ILUT(K) (a dual threshold incomplete LU
factorization). In the comparison of these two solvers, we use ILU(K) as the preconditioners
for both of them.

5. NUMERICAL EXPERIMENTS

We carry out numerical experiments on a shared-memory machine, SGI Origin 2000 with
8 250MHz processors and 4G memory; each processor has 32KB L1 cache for instruc-
tions, 32KB L1 cache for data, and 4MB L2 cache [18]. The convergent criterion for both
ORTHOMIN and GMRES is ‖rk‖2=‖RHS‖2610−4. As noted, the solution scheme is based
on the fully implicit solution method; i.e. all the coupled equations are solved simultaneously
and implicitly. The number of restarts is ten, and the ILU(0) is used as the preconditioner
for both ORTHOMIN and GMRES.
In the subsequent tables TT and ST indicate the total and solver CPU times in seconds,

respectively. NX, NY, and NZ are the number of grid blocks in the x-, y- and z-axis, DELTX
and DELTY are the length of the blocks in the x- and y-axis, respectively, and NWELL is
the number of wells simulated.
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5.1. A SPE problem

5.1.1. SPE1. This simulation problem is chosen from the second case of the benchmark
problem of the �rst CSP [19]. A grid of rectangular parallelepipeds for the reservoir un-
der consideration is given in Figure 3, where the number of subintervals in the x-, y- and
z-direction is 10, 10, and 3, respectively. The diagonal cross-sectional view of this reservoir
can be also seen in this �gure. We brie�y state the data; for more details on these data, see
Reference [19]. While a rectangular grid is shown in Figure 3, hexagonal prisms displayed
in Figure 2 are employed in the CVFA.
At the initial state, the reservoir reaches equilibrium with initial reservoir pressure 4800

psia at 8400 ft and with reservoir temperature 200◦F. The depth to the top of this reservoir is
8325 ft. The gas–oil (GOC) and water–oil contacts (WOC) are, respectively, located at 8320
and 8450 ft. The capillary pressure is zero. The reservoir porosity measured at a pressure of
14:7 psia is 0.3. The rock compressibility is 3× 10−6 1=psi. The PVT function data for oil,
water, and gas are, respectively, given in Tables I–V, where FVF stands for the formation
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Figure 3. Left: reservoir; right: diagonal cross section.

Table I. Saturated oil PVT function data.

Pressure FVF Viscosity Density Solution GOR
(psia) (RB=STB) (cp) (lbm=ft3) (SCF=STB)

14.7 1.0620 1.0400 46.244 1.0
264.7 1.1500 0.9750 43.544 90.5
514.7 1.2070 0.9100 42.287 180.0
1014.7 1.2950 0.8300 41.004 371.0
2014.7 1.4350 0.6950 38.995 636.0
2514.7 1.5000 0.6410 38.304 775.0
3014.7 1.5650 0.5940 37.781 930.0
4014.7 1.6950 0.5100 37.046 1270.0
5014.7 1.8270 0.4490 36.424 1618.0
9014.7 2.3570 0.2030 36.482 2984.0

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:941–962



952 W. LI ET AL.

Table II. Saturated water PVT function data.

Pressure FVF Viscosity Density Gas=water ratio
(psia) (RB=STB) (cp) (lbm=ft3) (SCF=STB)

14.7 1.0410 0.3100 62.238 0.0
264.7 1.0403 0.3100 62.283 0.0
514.7 1.0395 0.3100 62.328 0.0
1014.7 1.0380 0.3100 62.418 0.0
2014.7 1.0350 0.3100 62.599 0.0
2514.7 1.0335 0.3100 62.690 0.0
3014.7 1.0320 0.3100 62.781 0.0
4014.7 1.0290 0.3100 62.964 0.0
5014.7 1.0258 0.3100 63.160 0.0
9014.7 1.0130 0.3100 63.959 0.0

Table III. Gas PVT function data.

Pressure FVF Viscosity Density Pseudo gas potential
(psia) (RB=STB) (cp) (lbm=ft3) (psia=cp)

14.7 0.166666 0.008000 0.0647 0
264.7 0.012093 0.009600 0.8916 0.777916 E+07
514.7 0.006274 0.011200 1.7185 0.267580 E+08
1014.7 0.003197 0.014000 3.3727 0.875262 E+08
2014.7 0.001614 0.018900 6.6806 0.270709 E+09
2514.7 0.001294 0.020800 8.3326 0.386910 E+09
3014.7 0.001080 0.022800 9.9837 0.516118 E+09
4014.7 0.000811 0.026800 13.2952 0.803963 E+09
5014.7 0.000649 0.030900 16.6139 0.112256 E+10
9014.7 0.000386 0.047000 27.9483 0.251845 E+10

Table IV. Undersaturated oil PVT function data.

Pressure FVF Viscosity Density
(psia) (RB=STB) (cp) (lbm=ft3)

4014.7 1.6950 0.5100 37.046
9014.7 1.5790 0.7400 39.768

Table V. Undersaturated water PVT function data.

Pressure FVF Viscosity Density
(psia) (RB=STB) (cp) (lbm=ft3)

4014.7 1.0290 0.3100 62.964
9014.7 1.0130 0.3100 63.959
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Table VI. Relative permeability data of model I.

sg Krg Kro

0.0 0.0 1.0
0.001 0.0 1.0
0.02 0.0 0.997
0.05 0.005 0.980
0.12 0.025 0.700
0.2 0.075 0.350
0.25 0.125 0.200
0.30 0.190 0.090
0.40 0.410 0.021
0.45 0.60 0.010
0.50 0.72 0.001
0.60 0.87 0.0001
0.70 0.94 0.000
0.85 0.98 0.000
1.0 1.0 0.000

Table VII. Partition information for the SPE model.

NX NY NZ NWELL DELTX DELTY

10 10 3 2 1000 1000

Table VIII. CPU times and �ops of ORTHOMIN and GMRES for the SPE model.

Method TT (s) ST (s) Flops per iteration Days

ORTHOMIN 204.91 174.08 519 750 3650.0
GMRES 172.06 141.22 420 805 3650.0

volume factor. The horizontal and vertical absolute permeability distribution and the initial
water and oil saturation distribution are indicated in Figure 3. The saturation function data
are listed in Table VI.
There are a gas injection well and an oil production well (Table VII), whose wellbore

radii are 0:25 ft. Their locations are shown in Figure 3. They completely perforate at the �rst
and third zone, respectively. The gas injection rate is 100 MMSCF=D. The maximum and
minimum oil production rates of the production well are, respectively, 20 000 STB=D and
1000 STB=D, and the minimum �owing bottom hole pressure is 1000 psia. The run of the
simulator is terminated at the end of the 10th year. The CPU times for ORTHOMIN and
GMRES and their �ops per iteration are displayed in Table VIII. From this table we do see
speed-up of GMRES for this simulation problem; GMRES uses 81.12% of ORTHOMIN’s
CPU time. The average reservoir pressure, gas–oil ratio, oil production rate, and oil recovery
curves obtained by these two algorithms are shown in Figures 4 and 5. These curves match
well for the two di�erent algorithms.
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Figure 5. Left: oil production rate curve; right: oil recovery curve.

5.1.2. SPE1: re�ned. This model problem is the same as the previous one. We just re�ne the
grid in the x- and y-directions. Now, the number of subintervals in these two directions is 70,
and the total number of grid points is 14 700. For such a simulation problem with small grid
blocks and with a long simulation time (10 years), stability of the numerical solution to the
problem is very important. Both ORTHOMIN and GMRES work very well for this problem;
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Table IX. CPU times and �ops of ORTHOMIN and GMRES for the re�ned SPE model.

Method TT (s) ST (s) Flops per iteration Days

ORTHOMIN 70 480.36 63 798.47 25 467 750 3650.0
GMRES 45 605.43 39 071.48 20 616 805 3650.0
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Figure 6. Left: pressure curve; right: gas–oil ratio curve.

their CPU times and �ops per iteration are given in Table IX. We see that GMRES uses
only 61.24% of the CPU time of ORTHOMIN when the grid is re�ned. The average pressure,
gas–oil ratio, oil production rate, and oil recovery curves obtained by these two algorithms
are shown in Figures 6 and 7. Again, these curves match well for the two di�erent algorithms.

5.1.3. SPE1: relationship between the numbers of unknowns and iterations. To see how
the numbers of linear (the linear solvers) and nonlinear (the Newton–Raphson iterations)
iterations depend on the number of unknowns, we consider the following re�nements for the
SPE1 case 2:

1. NX=10, NY=10, and NZ=3 (the original SPE1 case 2),
2. NX=30, NY=30, and NZ=3,
3. NX=50, NY=50, and NZ=3,
4. NX=70, NY=70, and NZ=3.

All simulation experiments were conducted with a �nal time of 3650 days. The simulation
results are given in Tables X and XI and Figures 8 and 9.It follows from these tables and
�gures that the numbers of linear and nonlinear iterations for both GMRES and ORTHOMIN
increase nonlinearly with the number of unknowns, the linear iteration numbers are better for
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Figure 7. Left: oil production rate curve; right: oil recovery curve.

Table X. Comparison of the dependence of the number of linear iterations on the number of unknowns.

Number Linear iters Linear iters GMRES: Flops ORTHOMIN: Flops
Problems of unknowns of GMRES of ORTHOMIN per iteration per iteration

10× 10× 3 300 13 280 13 303 420 805 519 750
30× 30× 3 2700 42 136 54 174 3 786 805 4 677 750
50× 50× 3 7500 67 441 99 473 10 518 805 12 993 750
70× 70× 3 14 700 97 749 155 039 20 616 805 25 467 750

Table XI. Comparison of the dependence of the number of nonlinear
iterations on the number of unknowns.

Number Nonlinear iters Nonlinear iters
Problems of unknowns of GMRES of ORTHOMIN

10× 10× 3 300 475 476
30× 30× 3 2700 1081 1081
50× 50× 3 7500 1652 1635
70× 70× 3 14 700 2167 2183

GMRES than for ORTHOMIN, particularly for problems of larger sizes, and the nonlinear
iteration numbers are almost the same for both algorithms.

5.2. A real oil �eld problem

We now compare ORTHOMIN and GMRES for a large, real oil reservoir in South America
to simulate the behaviour of a water �ooding process and to predict the performance of this
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Figure 8. Dependence of the number of linear iterations on the number of unknowns.

Figure 9. Dependence of the number of nonlinear iterations on the number of unknowns.

reservoir. The outline of this reservoir is as follows:

• The initial formation pressure equals 11 800 psia and the initial bubble point pressure is
3157 psia.

• The datum depth is 15 500 ft and the depth of WOC is 17 200 ft.
• The surface oil density is 57:06lbmft3, the oil formation factor is 1.446, the oil viscosity
in the reservoir is 0:679 cp, and the oil–water viscosity ratio is 3.3.
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Table XII. Partition information for the real oil �eld model.

NX NY NZ NWELL DELTX DELTY

64 31 40 24 410 410

Table XIII. CPU times and �ops of ORTHOMIN and GMRES for the
real oil �eld model.

Method TT (s) ST (s) Flops per iteration Days

ORTHOMIN 68 518.80 60 923.75 91 660 800 4901.0
GMRES 50 497.55 42 889.26 74 201 655 4901.0

• The geological features are: 40 sandstone layers; the 11th and 30th layers—sealing; three
independent development units divided in the vertical direction; the western and eastern
regions divided by a fault in the reservoir.

• The reservoir has been developed for 13.5 years: 5.3 years—natural reservoir drive;
8.2 years—water injection.

• 24 wells have been drilled. Ten oil production wells and 5 water injection wells are used
to develop this reservoir in the current period.

5.2.1. 3D two-phase �ow problem. The �rst case is a two-phase (water and oil) �ow problem
in three dimensions. The dimensions of the partition of the simulation domain � is given
in Table XII. The CPU times and �ops per iteration for ORTHOMIN and GMRES are
displayed in Table XIII. From this table we again see speed-up of GMRES for this �ow
problem; GMRES uses 70.4% of ORTHOMIN’s CPU time. The average pressure, water cut,
daily oil production rate, and oil recovery curves obtained by these two algorithms are shown
in Figures 10 and 11.These curves match well.

5.2.2. 3D three-phase �ow problem. The second case simulates a three-phase (water, oil,
and gas) �ow problem, with the same partition as in Table XII. The numerical results are
displayed in Table XIV and Figures 12 and 13. Now, GMRES uses only 66.41% of the CPU
time of ORTHOMIN for this three-phase �ow problem.

5.2.3. 3D three-phase problem with a horizontal well. The third case is the same as the
second case considered above, except that a horizontal production well is added now. The
numerical results are stated in Table XV and Figures 14 and 15. Now, we see that the GMRES
uses only 69:54% of the CPU time of ORTHOMIN for this three-phase �ow problem.

5.3. Concluding remarks

In this paper we have discussed and implemented ORTHOMIN and GMRES for solution
of linear systems arising from the discretization of the black oil model using the CVFA on
unstructured grids. Numerical comparisons between these two algorithms have been presented
for a SPE problem and a real oil �eld problem. Based on the numerical results, we can draw
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Figure 10. Left: pressure curve; right: water cut curve.
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Figure 11. Left: daily oil production rate; right: oil recovery curve.

Table XIV. CPU times and �ops of ORTHOMIN and GMRES for three phases.

Method TT (s) ST (s) Flops per iteration Days

ORTHOMIN 199 403.32 178 974.25 137 491 200 4901.0
GMRES 141 168.79 118 853.82 111 302 455 4901.0
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Figure 12. Left: pressure curve; right: water cut curve.
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Figure 13. Left: daily oil production rate; right: oil recovery curve.

Table XV. CPU times of ORTHOMIN and GMRES with a horizontal well.

Method TT (s) ST (s) Days

ORTHOMIN 468 184.48 438 123.19 6726.0
GMRES 345 927.49 304 688.44 6726.0

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:941–962



BLACK OIL MODEL ON UNSTRUCTURED GRIDS 961

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

0  1000  2000  3000  4000  5000  6000  7000

P
re

ss
ur

e(
P

S
IA

)

Time(days)

0

 10

 20

 30

 40

 50

 60

 70

0  1000  2000  3000  4000  5000  6000  7000

W
at

er
 C

ut
(%

)
Time(days)

GMRES
ORTHOMIN

GMRES
ORTHOMIN

Figure 14. Left: pressure curve; right: water cut curve.
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Figure 15. Left: daily oil production rate; right: oil recovery curve.

the following conclusions:

• ORTHOMIN and GMRES have the same stability for all the tested problems in terms
of reservoir properties such as the average pressure, gas–oil ratio, oil production rate, oil
recovery, and water cut.

• GMRES is faster than ORTHOMIN for all the tested problems in terms of the total
and solver CPU times. The more e�ciency of GMRES can be particularly seen for
large-scale complex multiphase �ow problems.
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• As the scale of tested problems increases, GMRES’s e�ciency increases, as the SPE
problem and its re�nement have shown. As the complexity of tested problems increases,
GMRES’s e�ciency increases as well, as the real oil �eld problem has shown from two
to three phases.

• The numbers of linear and nonlinear iterations for both GMRES and ORTHOMIN in-
crease nonlinearly with the number of unknowns, the linear iteration numbers are better
for GMRES than for ORTHOMIN, particularly for problems of larger sizes, and the
nonlinear iteration numbers are almost the same for both algorithms.

The numerical observations made in this paper agree with theory. All Krylov subspace algo-
rithms are related to the choice of a basis of a Krylov subspace. In GMRES, an orthogonal
basis of a Krylov subspace is used, while in ORTHOMIN, the search directions uk are sought
to be ATA-orthogonal in the same Krylov subspace. Both the set of the uk’s and that of the
Auk’s need be stored in ORTHOMIN, which almost doubles the storage requirement compared
with GMRES. The number of arithmetic operations per iteration is also roughly 50% higher
than GMRES.
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